Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Groups/STANDARD MAPPING/FUEL CORRECTIONS

Injection Angle Control Method: END_ANGLE

Injection Angle Rate of Change (deg/Cylinder): 719.75

Base Cal Select Enable: **DISABLED** (see below)

This parameter allows the user to decide if they wish to use a single parameter, irrespective of the current base cal, or whether individual calibrations are used.

A number of maps are duplicated and selectable according to the base calibration currently being used.

Select ENABLE to use the Cal based fuel maps.

MULTIPLIERS/THROTTLE MULTIPLIERS

Throttle Multiplier: Correction for TPS Angle

•	Matrix: T	Throttle	Multipli	ier												•	▶िि	
6	RPM (r	_																Г
TPS (°)		875	1250	1625	2000	2375	2750	3125	3500	3875	4250	4625	5000	5375	5750	6125	6500	
ΤF	100.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	99.4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	98.8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	98.1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	97.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	95.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	90.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	80.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	70.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	60.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	51.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	42.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	35.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	30.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	25.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	20.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

Enable Fuel Map Throttle Multimaps: DISABLED (Six Throttle Multimap Multipliers...not used)

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

ENGINE COOLANT MULTIPLIERS/SINGLE CALIBRATION:

Engine Coolant Temperature Multiplier: % enrichment...time & temperature

```
This multiplier is used to correct the base fuel time for
changes in Engine Coolant Temperature. It is used to give enrichment
as the engine warms up.
Example values: 1.050 - gives 5% increase
1.000 - gives no change
The current value can be viewed as "inj_m_T_water" on the dashboard.
```

-	Matri	c Engine	e Coolan	t Tempe	rature N	1ultiplier	·						••	ð×
ø	ECT ((°C)												
TRUN (s)		-20.0	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	100.0	120.0	^
TRUN	2	1.324	1.324	1.324	1.324	1.324	1.324	1.125	1.121	1.121	1.117	1.063	1.004	
	5	1.320	1.320	1.320	1.320	1.320	1.320	1.121	1.121	1.121	1.109	1.055	1.000	
	10	1.313	1.313	1.313	1.313	1.313	1.313	1.113	1.113	1.109	1.063	1.031	1.000	
	20	1.305	1.305	1.305	1.305	1.305	1.305	1.105	1.102	⊾1.102	1.055	1.027	1.000	
	40	1.273	1.273	1.273	1.273	1.273	1.273	1.074	1.070	1.066	1.031	1.016	1.000	
	60	1.223	1.223	1.223	1.223	1.223	1.223	1.023	1.016	1.008	1.000	1.000	1.000	

Air Charge Multiplier: Post Intercooler

-	Matrix:	Air Cha	rge Tem	perature	Multipl	ier													×
୍ତ	ACT (°	C)																	
lbar)		-30.0	-20.0	-10.0	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	
AP (m	1000	1.267	1.221	1.179	1.127	1.076	1.026	0.984	0.957	0.952	0.972	1.013	1.046	1.081	1.142	1.165	⊾1.194	1.223	
Ŵ	1100	1.267	1.221	1.179	1.127	1.076	1.026	0.984	0.957	0.945	0.954	0.988	1.010	1.047	⊾1.104	1.134	1.168	1.202	
	1200	1.267	1.221	1.179	1.127	1.076	1.026	0.984	0.957	0.937	0.936	0.962	0.979	1.013	⊾1.065	1.104	⊾1.142	1.181	
	1300	1.267	1.221	1.179	1.127	1.076	1.026	0.984	0.957	0.929	0.917	0.936	0.949	0.980	⊾1.027	1.073	1.116	1.159	
	1400	1.267	1.221	<mark>⊾</mark> 1.179	1.127	1.076	<mark>⊾</mark> 1.026	0.984	0.957	0.922	0.899	0.910	0.918	0.946	0.989	1.043	⊾1.090	<mark>⊾</mark> 1.138	

Ambient Air Temperature Multiplier:

-	Matri	ix: Ambient Air Temperature Multiplier (*C) -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0														•	▶₽	P×	
୍ତ	AAT (°C)																	
		-30.0	-20.0	-10.0	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	^
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Atmospheric Pressure Multiplier:

	 ✓ Matrix: Atmospheric Pressure Multiplier BAP (mbar) 600 650 700 750 800 850 900 950 1000 1050 1100 													
6	Bap (mbar)												
		600	650	700	750	800	850	900	950	1000	1050	1100		
		0.922	0.932	0.941	0.951	0.961	0.969	0.977	0.987	0.998	1.000	1.029		

Engine Oil Pressure Multiplier:

~ N	Aatri	c Engin	e Oil Pr	essure N	Multipli	er					•	▶ ि	×
<mark>ہ</mark> ا	EOP ((bar)											
		0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.05	1.10	1
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

Engine Oil Temperature Multiplier:

-	 ✓ Matrix: Engine Oil Temperature Multiplier ✓ ► ► ✓ EOT (*C) 																		
6	EOT	(°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	1
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

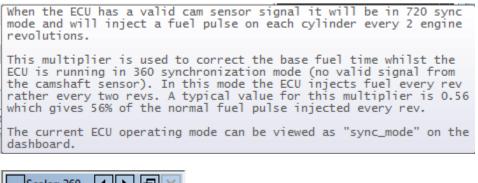
Exhaust Temperature Correction

-	Matri	atrix: Exhaust Temperature Correction (%) khaust Temperature Correction Breakpoints (°C) -100 0 100 200 300 400 500 600 700 800 900															◀	▶₽	×
6	Exha																		
		-100	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.023	1.102	1.203	1.203	1.203	1.203	1.203	1.203	

Fuel Pressure Modifier

-	Matri	x: Fuel P	ressure	Multip	lier												•	▶ 🗗	×
ø	FP (b	ar)																	
		7.00	7.20	7.40	7.60	7.80	8.00	8.20	8.40	8.60	8.80	9.00	9.20	9.40	9.60	9.80	10.00	10.20	Ê
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim


Fuel Temperature Modifier

•	Matrio	c Fuel T	empera	ature M	ultiplier												•	▶ 🗗	×
ø	FT (°(C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	Ē
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

Global Fuel Modifier

Scalar: Global Fuel Multiplier	$\bullet \bullet \boxminus \times$
Global Fuel Multiplier 1.000	Ē

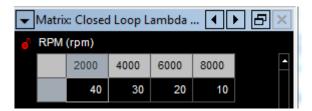
360 Sync Modifier

Groups/SRANDARD MAPPING/FUEL CORRECTIONS/ADDERS:

Battery Adder: ID1000 in Road Glide; ID1300 in Bullett

Battery Adder:

```
This adder is used to correct the base fuel time for changes
in battery voltage. This is needed as the opening speed of a fuel
injector varies with voltage.
The current value can be viewed as "inj_a_V_bat" on the dashboard.
```


-	Matri	x: Batter	y Adde	r (ms)															
6	VBAT	(V)																	
		8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.00	12.50	13.00	13.50	14.00	14.50	15.00	15.50	16.00	
		2.480	2.268	2.056	1.844	1.632	1.528	1.420	1.316	1.212	1.152	1.088	1.028	0.968	0.928	0.884	0.844	0.800	

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Groups/STANDARD MAPPING/FUEL CORRECTIONS/CLOSED LOOP LAMBDA:

Closed Loop Lambda Update Rate:

Specifies the rate at which proportional and in and the lambda multiplier (inj_m_lambda) is cal	tegral terms are calculated culated for each sensor.
Note that the integral term is scaled by this may has the same effect on the output irrespective of	

Closed Loop Lambda Minimum

The closed loop lambda injection multiplier is clipped if its value is less than the LAMBDA CORRECTION MINIMUM. This allows the amount of enleanment to be limited as a function of water temperature.
NOTE: Closed loop enleanment can be disabled at low water temperatures by setting the LAMBDA CORRECTION MINIMUM to 1.0 at these points

➡ Matrix: Lambda Correction Minimum										
💰 ECT	(°C)									
	-20	0	20	40	60	80	100	120	140	-
	1.000	1.000	1.000	1.000	0.946	0.893	0.893	0.893	0.893	

Lambda Correction Maximum

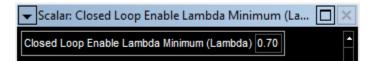
The closed loop lambda injection multiplier is clipped if its value is greater than the LAMBDA CORRECTION MAXIMUM. This allows the amount of enrichment to be limited as a function of water temperature. NOTE: Closed loop enrichment can be disabled at low water temperatures by setting the LAMBDA CORRECTION MAXIMUM to 1.0 at these points

➡ Matrix: Lambda Correction Maximum										
💰 ECT	(°C)									
	-20	0	20	40	60	80	100	120	140	
	1.146	1.146	1.146	1.146	1.146	1.146	1.146	1.146	1.146	

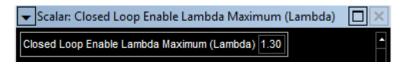
Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Closed Loop Lambda Target Exhaust Temperature Correction

-	▼ Matrix: Closed Loop Lambda Target Exhaust Temperature Correction (%)									×									
ø	Exha	ustTem	peratur	e Corre	ection B	reakpo	ints (°C)											
		-100	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	


Closed Loop Lambda Target Multiplier f(ECT): Engine Coolant Correction

-	Matri	x: Clos	ed Loo	p Lam	bda T	arget N	Multip	lier f(E	CT)										×
6	ECT	(°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	1
		0.97	0.97	0.97	0.97	0.97	0.97	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	


CLOSED LOOP LAMBDA: ENABLE DISABLE

Closed Loop Lambda Enable: ENABLED / DISABLED (must be disabled when editing a fuel map).

Closed Loop Enable Lambda Minimum

Closed Loop Enable Lambda Maximum

CLOSED LOOP LAMBDA: PID PARAMETERS

SIMPLE LAMBDA: Not used

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Closed Loop Lambda Proportional Gain

•	Matrix:	Closed L	.oop Lan	nbda Pro	portional	l Gain	
6	RPM (r	pm)					
ibar)		2000	4000	6000	8000		<u>^</u>
MAP (mbar)	800	2.000	6.000	8.000	8.000		
ĺ.	600	2.000	6.000	8.000	8.000		
	400	2.000	6.000	8.000	8.000		
	200	2.000	6.000	8.000	8.000		

Closed Loop Lambda Integral Gain

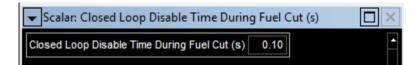
-	Matrix:	Closed L	.oop Lan	nbda Inte	egral Gair	ι 🗆 ×
ø	RPM (r	pm)				
ibar)		2000	4000	6000	8000	<u> </u>
MAP (mbar)	800	0.375	0.375	0.375	0.375	
N.	600	0.375	0.375	0.375	0.375	
	400	0.375	0.375	0.375	0.375	
	200	0.375	0.375	0.375	0.375	

Integral Total Minimum: 0.000 to 1.000

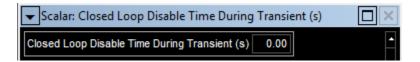
Integral Total Maximum: 1.000 to 2.000

CLOSED LOOP LAMBDA: DISABLE TIMERS

Closed Loop Disable Time Sensor Warmup: Seconds 0.00 to 655.35



Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

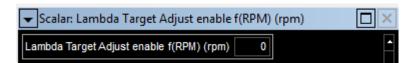

Closed Loop Disable Time Starting: Seconds 0.00 to 655.35

 Scalar: Closed Loop Disable Time Starting (s) 	
Closed Loop Disable Time Starting (s) 10.00	^

Closed Loop Disable Time During Fuel Cut: Seconds 0.00 to 655.35

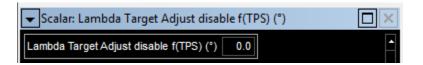
Closed Loop Time During Transient: Seconds 0.00 to 666.35

Closed Loop Disable Time During Gear Shift: Seconds 0.00 to 655.35


Closed Loop Disable Time During Gear Shift (s) 0.10	^

CLOSED LOOP LAMBDA: CATALYST ADJUSTMENT

Lambda Target Adjust disable f(RPM)



Lambda Target Adjust enable f(RPM)

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Lambda Target Adjust disable f(TPS)

Lambda Target Adjust enable f(TPS)

▼ Scalar: Lambda Target Adjust enable f(TPS) (°)	
Lambda Target Adjust enable f(TPS) (°) 0.0	•

Lambda Target Adjustment: 0.00 to 0.30

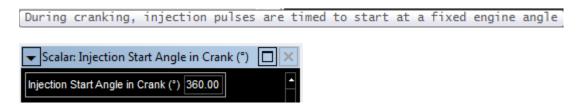
The lambda target will fluctuate either side of the closed loop lambda target by this amount if the TPS and RPM criteria have been met. Once the lambda target at one end of the fluctuation has been reached the target will be adjusted to the other extreme. This is so the fuelling will switch between runnig slightly rich and slightly lean around the target. This is primarily for lambda control at low rpms when using a catalyst.
✓ Scalar: Lambda Target Adjustment (Lambda) ✓ Lambda Target Adjustment (Lambda) 0.00

Groups/ STANDARD MAPPING/FUEL CORRECTIONS/OVERRUN FUELINGOverrun Fuel Cut Off Cal 1:

Angular velocity revs/minute 0 to 20000

th th pr	This map is used to give an overrun fuel cut off threshold. If the throttle is closed and the engine speed is above this threshold, the fuel will be cut. Fuelling is reinstated if the throttle is pressed or the engine speed drops below the overrun fuel reinstate threshold.																		
-	Matrix	c Overru	ın Fuel (Cut Off (Cal 1 (rp	m)											[• • [5 ×
6	ECT ((°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	^
		₹7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	

Overrun Fuel Reinstate Cal 1: Angular velocity revs/min 0 to 20000 (Entries also for Cal 2/3/4....)


This map is used to give a reinstatement threshold for the overrun fuel cut off. If the fuel is being cut and the engine speed drops below this threshold, the fuel will be reinstated.

-	Matrio	c Overru	un Fuel f	Reinstate	e Cal 1 (r	pm)											-	• • [8×
ø	6° ECT (°C)																		
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	-
		₹7500	₹7500	₹7500	₹7500	▶ 7500	₹7500	₹7500	₹7500	▶ 7500	₹7500	₹7500	₹7500	₹7500	₹7500	₹7500	₹7500	₹7500	

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Groups/STANDARD MAPPING/FUEL CORRECTIONS/FUELING DURING STARTING

Injection Start Angle in Crank

FUELING DURING STARTING/SINGLE CALIBRATIONS

Preliminary Injection

```
The "Preliminary Injection" is a single fuel pulse that is injected
by all primary injectors as the engine start to turn. It is used to
wet the inlet manifold walls.
```

~ N	Matrix	: Prelimin	ary Inject	ion (ms)															$\mathbf{\times}$
6	ECT (°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	1
		15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	14.000	13.000	12.000	10.000	8.000	6.000	4.000	2.000	0.000	

Base Fuel in Crank: ms

```
This map is used to determine the base fuel time when the engine
is cranking. Once the engine speed exceeds the "Crank Exit Speed"
the ECU switches to RUN mode and obtains its fuelling from the
"Base Fuel Map".
```

The current value can be viewed as "inj_base" on the dashboard.

-	▼ Matrix: Base Fuel in Crank (ms)																		
ø	TPS (°)																	
		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	
		1.42	1.58	1.73	1.90	2.04	2.21	2.35	2.52	2.67	2.81	2.26	1.71	1.12	0.58	0.00	0.00	0.00	

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Cranking Multiplier:

```
This multiplier is used to correct the base fuel time whilst the
engine is cranking. The Cylinder Count axis on the map is used
to give a bigger correction when the engine initial starts to
turn and to enable this correction to decay away as the inlet
becomes wet.
Example values: 1.050 - gives 5% increase
1.000 - gives no change
0.950 - gives 5% decrease
The current value can be viewed as "inj_m_crank" on the dashboard.
```

-	Matrix: C	Cranking	g Multip	olier						
6	Cylinde	r Count	Breakpo	oints						
(°C)		10	210	310	450	480	496	500	540	^
ECT	65.0	1.50	1.29	1.19	1.05	1.02	1.00	1.00	1.00	
	20.0	1.50	1.29	1.19	1.05	1.02	1.00	1.00	1.00	
	5.0	1.50	1.29	1.19	1.05	1.02	1.00	1.00	1.00	
	-5.0	1.50	1.29	1.19	1.05	1.02	1.00	1.00	1.00	
	-15.0	1.88	1.62	1.49	1.31	1.27	1.25	1.25	1.25	
	-20.0	2.25	1.94	1.79	1.57	1.52	1.50	1.50	1.50	
	-25.0	2.25	1.94	1.79	1.57	1.52	1.50	1.50	1.50	
	-30.0	2.25	1.94	1.79	1.57	1.52	1.50	1.50	1.50	

Groups/STANDARD MAPPING/FUEL CORRECTIONS/BANKED INJECTION:

SECONDARY INJECTOR LEAN LIMIT

Enable Banked Injection: **DISABLED** (this category is for secondary Injectors)

Groups/STANDARD MAPPING/FUEL CORRECTIONS/TRANSIENT FUEL CORRECTION:

Maximum Engine Speed (rpm): 7000

Start Cylinder Count Before TFC: 0 to 65535

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Enable Time Based Transients: ENABLED

This map enables/disables transient fuel corrections. These are triggered when the rate of change of throttle angle exceeds a predefined threshold. The current transient fuel value can be viewed as "inj_a_tps" on the dashboard.

Maximum Throttle Angle (degrees): 70.0

The transient fuel calculations are only updated if the throttle angle is below this upper threshold.

Minimum Delta Throttle (degrees): 0.0 to 90.0

```
This is the minimum rate of change of throttle needed to trigger
the transient fuel strategy.
```

▼ Scalar: Minimum Delta Throttle (°)	
Minimum Delta Throttle (°) 0.3	^

Accel Positive Gain

This map is used to give the gain value for positive (throttle opening) transients. As the throttle opens, a correction is added to the base fuel quantity to compensate for manifold effects. The INITIAL size of this correction depends on the rate of change of throttle and the gain value. A larger gain will give a bigger correction.
A farger gann with give a brigger confeccioni
transient correction = rate of change of throttle x gain
*
** gain = 2
O******** ****************************
*
de de
÷ ÷
* * gain = 3
* *
O******** ****************************
30 ***************************** THROTTLE (degrees)
*
40 A
0******
0123456789->TIME
The current value can be viewed as "acc_gain_pos" on the dashboard. The current transient fuel value can be viewed as "inj_a_tps" on the dashboard.

•	Matrio	c Accel P	ositive G	Gain						
	RPM	(rpm)								
		1000	1500	1900	2000	3000	4000	5000	6000	^
		0.000	0.200	0.200	5.000	5.000	5.000	1.000	1.000	

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Accel Positive Decay

```
This map is used to give the decay value for positive (throttle opening)
transients. The decay value is a multiplier that reduces the transient
correction each time it is updated. A decay value of 0.90 would reduce the
correction by 10% each update. A smaller decay value gives a faster decay.
  transient correction = transient correction x decay
          ***
 5
          *
             *
          \approx
              *
                     decay = 0.90 - 10%
          12
               12
                 0*******
 5
          ***
          *
              12
          **
                 *
                   decay = 0.95 - 5%
          *
                     0*******
 0----1----2----3----4----5----6----7----8----9->TIME
```

The current value can be viewed as "acc_decay_pos" on the dashboard. The current transient fuel value can be viewed as "inj_a_tps" on the dashboard.

-	Matrix: A	Accel Pos	sitive De	cay						
	RPM (rp	m)								
ECT (°C)		1000	1500	1900	2000	3000	4000	5000	6000	•
ECT	80.0	0.985	0.985	0.980	0.960	0.956	0.000	0.000	0.000	
	50.0	0.990	0.990	0.990	0.980	0.980	0.000	0.000	0.000	
	20.0	0.990	0.990	0.980	0.980	0.980	0.000	0.000	0.000	
	-20.0	0.990	0.990	0.980	0.980	0.980	0.000	0.000	0.000	

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Accel Positive Clamp

```
This map is used to give the clamp value for positive (throttle opening) transients. The clamp value is used as an upper limit on the correction.
          ÷
 5
          **
          * *
          * *
                    clamp = 5.0 (ms)
          *
              *
 0*******
              .
          . .
          ••••
 2
                    clamp = 2.0 (ms)
          *
              *
              0*******
The current value can be viewed as "acc_clamp_pos" on the dashboard.
The current transient fuel value can be viewed as "inj_a_tps" on the dashboard.
```

-	Matrio	a Accel I	Positive	Clamp ((ms)					\Box \times
ø	RPM	(rpm)								
		1000	1500	1900	2000	3000	4000	5000	6000	-
		0.00	0.00	5.00	5.00	5.00	5.00	5.00	5.00	

Accel Negative Gain

This map is used to give the gain value for negative (throttle closing) transients. As the throttle closes, a correction is subtracted from the base fuel time to compensate for manifold effects. The INITIAL size of this correction depends on the rate of change of throttle and the gain value. A larger gain will give a bigger correction.
transient correction = rate of change of throttle x gain
O******* *****************************
O******** ****************************
* * gain = 3 * *
**
30*****
*
a 0 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
0123456789->TIME
The current value can be viewed as "acc_gain_neg" on the dashboard. The current transient fuel value can be viewed as "inj_a_tps" on the dashboard.
▼ Matrix: Accel Negative Gain

Ī	RPN	l (rpm)	2							
		1000	1500	1900	2000	3000	4000	5000	6000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Accel Negative Decay

```
This map is used to give the decay value for negative (throttle closing)
transients. The decay value is a multiplier that reduces the transient
correction each time it is updated. A decay value of 0.90 would reduce the
correction by 10% each update. A smaller decay value gives a faster decay.
  transient correction = transient correction x decay
               0*******
         12
               12
          *
              \approx
                    decay = 0.90 - 10%
         *
            *
         ***
-5
 0*******
                    *
                  -
          *
              *
                    decay = 0.95 - 5%
          *
              *
         ***
-5
 0----1----2----3----4----5----6----7----8----9->TIME
The current value can be viewed as "acc_decay_neg" on the dashboard.
The current transient fuel value can be viewed as "inj_a_tps" on the dashboard.
```

▼ Matrix: Accel Negative Decay												
ø	RPM (rpm)											
(c)		1000	1500	1900	2000	3000	4000	5000	6000	^		
ECT	80.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
	50.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
	20.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
	-20.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Accel Negative Clamp

```
This map is used to give the clamp value for positive (throttle closing) transients. The clamp value is used as an upper limit on the correction.
 O******** TRANSIENT CORRECTION (ms)
          *
             *
          * *
                    clamp = -5.0 (ms)
         **
-5
         *
 *
            52
          ****
                    clamp = -2.0 (ms)
-2
          . .
          . .
The current value can be viewed as "acc_clamp_neg" on the dashboard.
The current transient fuel value can be viewed as "inj_a_tps" on the dashboard.
```

 Matrix: Accel Negative Clamp (ms) 												
ø	RPM (rpm)											
		1000	1500	1900	2000	3000	4000	5000	6000	_		
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim

Groups/STANDARD MAPPING/FUEL CORRECTIONS/INDIVIDUAL CYLINDER TRIM:

Enable Cylinder Fuel Trim: DISABLED (Best left disabled)

```
This maps enables/disables the individual cylinder trim functions
for fuel. Individual cylinder trims should only be used to make
MINOR changes to the base fuel time to compensate for differences
in air intake distribution etc.
```

The current value can be viewed as "cyl_fuel" on the dashboard.

▼ Matrix: Cylinder 1												
ø	RPM (r	RPM (rpm)										
ıbar)		650	1300	1950	2600	3250	3900	4550	5200	5850	6500	^
MAP (mbar)	870	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
M/	640	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	450	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	120	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	75	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

-	➡ Matrix: Cylinder 2												
୍ତ	RPM (rpm)												
ibar)		650	1300	1950	2600	3250	3900	4550	5200	5850	6500	•	
MAP (mbar)	870	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
M/	640	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
	450	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
	300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
	120	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
	75	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		

Multipliers/Adders/Lambda/Overrun/Starting/Banked Inj/Transient/Individual Cylinder Trim