Groups/HARDWARE SETUP/INJECTOR CONFIGURATION/Injector 5 to 12 Channel Usage:

Injectors 5 and 6 are setup for the Phase / Antiphase PWM

▼ M	▼ Matrix: Injector 5 to 12 Channel Usage												
👌 In	jector_Channel												
	INJ5	INJ6	INJ7	INJ8	elni								
	PWM -	PWM -	PWM -	ANALOG_ALTERNATE -	ANALOG_ALTEF								

Groups/HARDWARE SETUP/MULTI-FUNCTION OUTPUT CHANNELS/INJECTOR CHANNELS/PWM11 (INJ 5, CN2 B)/ PWM11 Function Select: Phase Solenoid

Scalar: PWM11 Function Select	t	
PWM11 Function Select	WASTEGATE 🗸	

Groups/HARDWARE SETUP/MULTI-FUNCTION OUTPUT CHANNELS/INJECTOR CHANNELS/PWM11 (INJ 5, CN2 B)/ PWM11 Invert Select: Phase Solenoid

Scalal. P WIVIII IIIVEIL SElect	
PWM11 Invert Select NORMAL ~	_

Groups/HARDWARE SETUP/MULTI-FUNCTION OUTPUT CHANNELS/INJECTOR CHANNELS/PWM12 (INJ 6, CN2 T)/ PWM12 Function Select: Antiphase Solenoid

Scalar: PWM12 Function	n Select	
PWM12 Function Select	WASTEGATE_ANTIPHASE	^

Groups/HARDWARE SETUP/MULTI-FUNCTION OUTPUT CHANNELS/INJECTOR CHANNELS/PWM12 (INJ 6, CN2 T)/ PWM12 Invert Select: Antihase Solenoid

Groups/SOFTWARE SETUP/MAP BREAKPOINTS/WASREGATE CONTROL BREAKPOINTS/

Speed Breakpoint Size: 16

Speed Breakpoints:

Load Breakpoint Size: 4 to 6

➡ Scalar: Load Breakpoint Size	
Load Breakpoint Size 6	^

Load Breakpoints:

▼ Axis: I	Load Bre	 Axis: Load Breakpoints (°) 												
Index	Index													
	1	2	3	4	5	6	•							
	30.0	42.0	54.0	66.0	78.0	90.0								

Base Duty Adder Breakpoint Size: 10

Base Duty Adder Load Breakpoints: 0 to 6000

-	Axis: E	Base Du	ity Add	ler Loa	d Break	points						
	Index	(
		1	2	3	4	5	6	7	8	9	10	▲
		250	500	750	1000	1250	1500	1750	2000	2250	2500	

Ambient Temperature Breakpoints:

Ambient Pressure Breakpoints:

-	Axis: A	Ambier	nt Press	ure Bre	akpoir	its (mb	ar)							
	Index													
		1	2	3	4	5	6	7	8					
		700	750	800	850	900	950	1000	1050					

Closed Loop Target Maximum Rate of Change PPS Breakpoint Size: 10

Closed Loop Target Maximum Rate of Change PPS Breakpoints:

Axis: Closed Loop Target Maximum Rate of Change PPS Breakpoints (°)													
Index													
	1	2	3	4	5	6	7	8	9	10			
	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0			

Closed Loop Wastegate Control Error Breakpoint Size: 6

Closed Loop Wastegate Control Error Breakpoints:

➡ Axis: Closed Loop Wastegate Control Error Breakpoints													
Inde	x												
	1	2	3	4	5	6		^					
	10	30	60	110	180	280							

Closed Loop Wastegate Control Derivative Breakpoint Size: 7

Closed Loop Wastegate Control Derivative Breakpoints:

Duty Transfer Function Breakpoints:

▼Axis: Duty Tranfer Function Breakpoints (%)																							
	ndex																						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	-
		0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	

Groups/STANDARD MAPPING/BASE CALIBRATION 1/

Base Wastegate Control Duty Map (First Gear)1:

This map is used to detrmine the base duty cycle for the wastegate control valve. A value of 100 in this map should give maximum boost and a value of O minimum. If this is reversed, the "Wastegate Control Valve Configuration" should be checked, as closed loop operation will not function correctly. The final duty cylce applied to the valve is subject to correction: D_wg_total = D_wg_base : base duty = D_wg_base . Dase duty + wg_a_T_air : air charge temperature correction + wg_a_T_amb : ambient air temperature correction + wg_a_P_amb : ambient pressure correction + wg_a_base_T : adder based on current target + wg_a_global : global correction + I_term : closed loop integral term + P_term : closed loop proportional term + D_term : closed loop derivative term The closed loop terms are only applied if closed loop control is enabled. NOTE: Closed loop operation MUST be disabled when adjusting this map The current value can be viewed as "D_wg_base" on the dashboard. If using gear based wastegate control, this map is for the specified gear. If not using gear based control then only the first gear map is used. See the map "Wastegate Gear Based Duty Ratio" for more information on gear based control.

✓ Matrix: Base Wastegate Control Duty Map (First Gear) 1 (%)

																	_	
	RPM (r	pm)																
(_) p		2000	2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	
eman	90.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
p_gv	78.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
λ.	66.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	54.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	42.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	30.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	

Base Wastegate Control Duty Map (Top Gear)1:

This map is used to detrmine the base duty cycle for the wastegate control valve. A value of 100 in this map should give maximum boost and a value of 0 minimum. If this is reversed, the "Wastegate Control Valve Configuration" should be checked, as closed loop operation will not function correctly. The final duty cylce applied to the valve is subject to correction: D_wg_total = D_wg_base : base duty : air charge temperature correction : ambient air temperature correction : ambient pressure correction + wg_a_T_air + wg_a_T_amb + wg_a_P_amb + wg_a_base_T : adder based on current target + wg_a_global : global correction + I_term : closed loop integral term + P_term : closed loop proportional term + D_term : closed loop derivative term The closed loop terms are only applied if closed loop control is enabled. NOTE: Closed loop operation MUST be disabled when adjusting this map The current value can be viewed as "D_wg_base" on the dashboard. If using gear based wastegate control, this map is for the specified gear. If not using gear based control then only the first gear map is used. See the map "Wastegate Gear Based Duty Ratio" for more information on gear based control.

▼ Matrix: Base Wastegate Control Duty Map (Top Gear) 1 (%)

			-		-													
	RPM (r	pm)																
(_) p		2000	2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	-
eman	90.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	
p_Bw	78.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	
Ņ	66.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	
	54.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	
	42.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	
	30.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	

Closed Loop Wastegate Control Target 1: Maps 1-4 set the same

This map sets the closed loop target for the wastegate control system. The target type (MANIFOLD_PRESSURE, RESTRICTOR_PRESSURE, TURBO_SPEED or MANIFOLD_PRESSURE_2, P_WASTEGATE, DUAL_MAP_AND_PRP) should first be set in the "Closed Loop Wastegate Control Target Type". Closed loop control is only enabled if the throttle angle is greater than or equal to the angle at the top row of the base duty map. The target is subject to correction: wg_target_total = (wg_target_base : base target + wg_target_a_T_air : air charge temperature correction + wg_target_a_T_amb : ambient air temperature correction + wg_target_a_P_amb) : ambient pressure correction x wg_target_m_torque : strain gauge torque correction X wg_target the units are 100 RPM/bit For pressure targets the units are always 1 mbar/bit

•	Matrix:	Closed L	.oop Wa	stegate	Control	Target 1	. (Target	:)										
	RPM (r	pm)																
(_) p		2000	2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	<u> </u>
eman	90.0	1350	1350	1350	1350	1500	1650	1800	1900	2000	2100	2300	2400	2500	2500	2500	2500	
p_gw	78.0	1350	1350	1350	1350	1400	1625	1750	1800	1900	2000	2250	2250	2250	2250	2250	2250	
2	66.0	1350	1350	1350	1350	1350	1550	1625	1700	1800	1900	2150	2150	2150	2150	2150	2150	
	54.0	1350	1350	1350	1350	1350	1450	1500	1600	1700	1800	1800	1800	1800	1800	1800	1800	
	42.0	1350	1350	1350	1350	1350	1350	1500	1550	1600	1700	1700	1700	1700	1700	1700	1700	
	30.0	1350	1350	1350	1350	1350	1350	1350	1500	1500	1500	1500	1500	1500	1500	1500	1500	

Closed Loop Wastegate Control Target 1- PRP: PRP target used when dual control (MAP and PRP) is selected

•	Matrix: (Closed L	.oop Wa	stegate	Control	Target 1	- PRP (Target)]]	
୍ତ	RPM (rp	om)												
(_) pi		3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	Ē
eman	70.0	0	0	0	0	0	0	0	0	0	0	0	0	
p_gw	55.0	0	0	0	0	0	0	0	0	0	0	0	0	
1	40.0	0	0	0	0	0	0	0	0	0	0	0	0	
	25.0	0	0	0	0	0	0	0	0	0	0	0	0	
	10.0	0	0	0	0	0	0	0	0	0	0	0	0	
	6.0	0	0	0	0	0	0	0	0	0	0	0	0	

Groups/STANDARD MAPPING/WASTEGATE CONTROL

Wastegate Gear Based Duty Ratio (%):

The ratio entered here determines the interpolation between the first gear and top gear wastegate base duty maps. A value of 0% uses the first gear map directly. A value of 100% uses the top gear map directly. A value between 0-100% is a linear interpolation between the first gear and top gear map values. If gear based control is not required, this map should be set to all 0%, then the duty in the first gear map will always be used.

•	Matrio	c Wastegate G	ear Based Dut	y Ratio (%)						
୍ତ	gear_	pos								
		FIRST	SECOND	THIRD	FOURTH	FIFTH	SIXTH	SEVENTH	EIGHTH	_
		0.0	0.0	30.1	100.0	100.0	100.0	100.0	100.0	

Wastegate Control Demand Mode:

This parameter allows the user to decide on the source channel for Y axis lookups for a number of wastegate control maps.

Base Wastegate Control Valve Duty Correction f(ACT)

This map is used to apply a correction to the wastegate duty cycle as the air charge temperature changes. It is normally used to help prevent engine damage by reducing the boost when intake temperatures get too high. NOTE: If closed loop wastegate control is enabled the target should have a similar correction applied. The current value can be viewed as "wg_a_T_air" on the dashboard.

– N	/latrix	: Base W	/astegat	e Contro	l Valve D	Outy Cor	rection f	(ACT) (9	6)									×
e ⁰ /	ACT (°C)																
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	-
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-2.0	-4.0	-6.0	-8.0	-10.0	-12.0	-14.0	

Base Wastegate Control Valve Duty Correction f(AAT) (%): Correction for Ambient Air Temperature

▼ M	latrix:	Base W	/astegat	e Contro	l Valve [Outy Cor	rection f	(AAT) (9	%)										×
👩 A	AT (°(C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	-
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Base Wastegate Control Valve Duty Correction f(ECT): Correction for Engine Coolant Temperature

~	Matrio	c Base	Waste	gate C	ontrol	Valve l	Duty C	orrecti	on f(E	CT) (%)								
୍ତ	ECT ((°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	_
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Base Wastegate Control Valve Duty Correction f(EOT) (%): Correction for Engine Oil Temperature

•	Matrix	c Base	Waste	gate C	ontrol	Valve	Duty C	orrecti	on f(E	OT) (%)								×
ø	EOT ((°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	Ē
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Base Wastegate Control Valve Duty Correction f(BAP) (%): Barometric Air Pressure Correction

-	Matrix	a Base V	/astegat	e Contro	l Valve [Outy Cor	rection f	(BAP) (१	6)				×
ø	BAP (mbar)											
		600	650	700	750	800	850	900	950	1000	1050	1100	-
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Base Wastegate Control Valve Duty Correction f(BPOT) (%): User Controlled Potentiometer

•	Matrix	a Base V	Vastegat	e Contro	ol Valve	Duty Co	rrection	f(BPOT) (%)]	
6	RPM	(rpm)															
РОТ		2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	
8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	⊾ 0	⊾ 0	⊾ 0	⊾ 0	⊾ 0	⊾ 0	⊾ 0	⊾ 0	⊾ 0	
	3	0	0	0	0	0	0	٥	٥	٥	٥	⊾ 0	⊾ 0	⊾ 0	⊾ 0	٥	

Base Wastegate Control Valve Duty Adder

This map allows an adder to the wastegate base duty to be applied based on the current total wastegate target 'wg_target_total' and engine speed. NOTE: This parameter does not contribute to the total base duty when the 'Closed Loop Wastegate Control Target Type' is set to DUAL_MAP_AND_PRP.

•	Matrix	Base Wa	astegate	Control	Valve D	uty Add	er (%)											×
୍ତ	RPM (rpm)																
total		2000	2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	
rget	2500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
vg_ta	2250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\$	2000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1750	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	750	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
																		•
	4																· ·	

Global Wastegate Control Valve Duty Correction (%)

Wastegate Control Valve On f(TPS)

Wastegate Control Valve Off f(TPS)

Wastegate Control Valve Duty Minimum

If the wastegate control valve duty is below this threshold the valve is turned fully on/off depending on the "Wastegate Control Valve Configuration". Scalar: Wastegate Control Valve Duty Minimum (%) Wastegate Control Valve Duty Minimum (%) 1.0

Wastegate Control Valve Duty Maximum

If the wastegate control valve duty is above this threshold the valve is turned fully on/off depending on the "Wastegate Control Valve Configuration".

Wastegate Control Valve Frequency

This map selects the frequency at which the wastegate control valve will oscillate when enabled. Air flow is regulated to the wastegate by varying the MARK/SPACE ratio of the valve.

 Scalar: Wastegate Control Valve Frequency (Hz) 	
Wastegate Control Valve Frequency (Hz) 20	

Wastegate Control Valve Configuration:

The "Wastegate Control Valve Configuration" is used to select the logic used to drive the wastegate control valve. This map should be set to BLEED_ON/BLEED_OFF depending on whether air is bled onto/off of the wastegate when the valve is turned on. When this map is set correctly 100% in the base duty map will give maximum boost, and 0% minimum. NOTE: Closed loop wastegate control will not operate correctly if this is not set corretly.

Wastegate Duty Transfer Function : Phase Solenoid connected to top of wastegate.

If tu	th rne	e wa d fu	aste ully	gate on/	con off	trol depe	val ndin	ve o ng or	luty n the	is e "W	belo aste	w th gate	is t Con	hres trol	hold Val	l the ve (e va Ionfi	lve igur	is atio	n".			
Matrix: Wastegate Duty Transfer Function (%) D_wg_total (%)																	×						
		0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	•
		0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	

Wastegate Antiphase Duty Transfer Function: Antiphase Solenoid connected to side of the wastegate.

•	Matrix	: Waste	gate Ar	ntiphase	e Duty T	ransfer	Functio	on (%)															
ø	D_wg	_total (S	%)																				
		0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	•
		100.0	95.0	90.0	85.0	80.0	75.0	70.0	65.0	60.0	55.0	50.0	45.0	40.0	35.0	30.0	25.0	20.0	15.0	10.0	5.0	0.0	

Enable Time Based Wastegate Control: DISABLED

GEAR CHANGE WASTEGATE CONTROL:

Gear ChangeWastegate Control Duty (%)

•	Matrio	c Gear C	hange V	Vastega	te Contr	ol Duty (%)	
	RPM	(rpm)					
		1800	3600	5400	7200		^
		100.0	100.0	100.0	100.0		

Gear Change Wastegate Control Time (s)

LEGACY GEAR CHANGE

Gear Change Wastegate Control Duty

Gear Change Wastegate Control Time

CLOSED LOOP WASTEGATE CONTROL:

Closed Loop Wastegate Control Enable: ENABLED

```
Closed loop wastegate control can be enabled/disabled using this map.
When mapping the Base Wastegate Control Duty Map it is important to DISABLE
closed loop control.
```

Closed Loop Wastegate Control Target Type

This map selects which input signal (manifold pressure, restricter pressure, turbo speed, manifold pressure 2 or dual manifold and restrictor pressure) is used as the target for the closed loop wastegate control system.

Note that each reading of the manifold pressure sensor is always at the same engine position (angle-based). All other signals (restricter pressure, turbo speed or manifold pressure 2) will be read at a fixed rate as specified in the "Sample Rate" map for each analog channel configuration.

Closed Loop Wastegate Target Maximum Rate of Change: 100 to 500000

This parameter can be used to limit the maximum rate of change of the calculated 'wg_target_total' channel, used for determining the target level of engine boost.

The ability to limit the rate of change of 'wg_target_total' is intended for transient conditions so they do not drastically affect the level of boost, such conditions exist when a vehicle goes over a jump for instance.

In all other circumstances, when there is a change actioned that may be calibrated with significantly different target levels, this rate of change will not be applied.

These circumstances include: change of Base Calibration, entering Start Line mode, Gear Shifts and finally when the DUAL target option is selected, each time there is a change in target.

Since the target is a generic target type, suitable for turbo speed in 100 RPM/bit or a pressure targeted in 1 mbar/bit, depending on the 'Closed Loop Wastegate Control

 Matrix: Closed Loop Wastegate Target Maximum Rate of Change (Target/s) PPS (°) sod 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 EIGHTH SEVENTH SIXTH FIFTH FOURTH THIRD SECOND FIRST NEUTRAL REVERSE

Target Type', the units of this parameter are (100 RPM)/sec or mbar/sec.

Closed Loop Wastegate Control Throttle Angle Enable:

Closed LoopWastegate Control Target Correction f(ACT): Air Charge Temperature

• I	Matrix	: Close	d Loop	Wastega	ate Conf	trol Targ	jet Corr	ection f	(ACT) (1	Target)									$] \times$
e [®]	ACT (°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	•
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Closed Loop Wastegate Control Target Correction f(ECT): Engine Coolant Temperature

~ N	/latrix	: Close	d Loop	Wastega	ate Conf	trol Targ	get Corr	ection f	(ECT) (1	「arget)									×
💰 E	ECT (°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Closed Loop Wastegate Control Target Correction f(EOT): Engine Oil Temperature

•	Matrix	: Closed	ا Loop ا	Wastega	te Cont	trol Targ	jet Corr	ection f	(EOT) (1	larget)									×
ø	EOT (°C)																	
		-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Closed Loop Wastegate Control Target Correction f(BAP): Barometric Air Pressure

•	Matrix:	Closed	Loop Wa	astegate	Control	Target	Correcti	on f(BAF	P) (Targe	et)								×
	RPM (r	rpm)																
ıbar)		2000	2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	
4Р (п	1050	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
â	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	950	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	850	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	750	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	700	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Closed Loop Wastegate Control Target Correction f(AAT): Ambient Air Temperature

•	Matrix: C	losed L	oop Wa	stegate (Control 1	Farget C	orrectio	n f(AAT)) (Target)							
ø	RPM (rp	m)															
(c)		2000	2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500
AAT	60.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	50.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	40.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	30.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-10.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Closed Loop Wastegate Control Target Correction f(BPOT) (%): User Boost Controlled Potentiometer

-	Matrix	c Closed	l Loop V	Vastegat	e Contro	ol Targe	t Correc	tion f(BF	POT) (%))								
ø	RPM ((rpm)																
POT		2000	2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	
m	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Closed Loop Wastegate Control Target Correction f(TORQUE error): Based on Strain Gauge inputs/gear

•	Matrix	: Closed	Loop W	astegate	Control ⁻	Target C	orrection	f(TORQ	UE error))									×
ø	TORC	UE erro	r (Nm)																
		1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	Ŀ
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

INTEGRAL TERM:

Closed Loop Wastegate Control Integrator Gain (Positive Error)

-	Matrio	c Close	d Loop	Wasteg	ate Cor	trol Int	egrator	Gain (Positive Error) (%)	
ø	wg_e	rror							
		25	50	100	150	200	250		^
		0.0	1.2	4.4	7.2	10.0	15.2		

Closed Loop Wastegate Control Integrator Gain (Negative Error)

•	Matri	c Close	d Loop	Wasteg	ate Con	trol Inte	egrator	Gain (Negative Error) (%)	
ø	wg_e	rror							
		25	50	100	150	200	250		^
		0.0	1.2	4.4	7.2	10.0	15.2		

Maximum Integrator (Positive Error) (%): 10%

Maximum Integrator (Negative Error) (%): 15%

PROPORTIONAL TERM:

Closed Loop Wastegate Control Proportional Gain (Positive Error):

Matrix: Closed Loop Wastegate Control Proportional Gain (Positive Error) (%)													
ø	wg_error												
		10	30	60	110	180	280	▲					
		1.6	6.6	13.1	18.0	20.2	21.6						

Closed Loop Wastegate Control Proportional Gain (Negative Error):

-	 Matrix: Closed Loop Wastegate Control Proportional Gain (Negative Error) (%) 													
ø	g wg_error													
		25	50	100	150	200	250		-					
		0.0	0.5	1.7	2.6	4.0	10.0							

DERIVATIVE TERM:

Closed LoopWastegate Control Derivative Gain

Matrix: Closed Loop Wastegate Control Derivative Gain (%)													
ø	deltaMap (mbar/s)												
		0	250	500	750	1000	1250	1500		^			
		0.0	0.0	0.0	0.0	0.0	0.0	0.0					

Closed Loop Wastegate Control Derivative Decay Positive (%/s): 0.4 to 10000.0

Closed Loop Wastegate Control Derivative Decay Negative (%/s): 0.4 to 10000.0

DUAL CLOSED LOOP CONTROL: Not used...For Restrictors

WASTEGATE CONTROL 21 July 2016

BOOST LIMITS:

Boost Limit

```
If the manifold pressure exceeds this threshold, a soft limit is applied
which randomly cuts cylinders. The method of cut (fuel or ignition)
is selected by the "Boost Limit Torque Reduction Mode". The severity of
the limit is set in the "Boost Limit Torque Reduction".
```

This entry is above our closed loop target of 2500 mbar.

•	▼ Matrix: Boost Limit (mbar)																	
ø	RPM (PM (rpm)																
		2000	2300	2600	2900	3200	3500	3800	4100	4400	4700	5000	5300	5600	5900	6200	6500	^
		3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	

Boost Limit Torque Reduction

STEPPER MOTOR CONTROL: Not Usedfor Wastegate Control

PHASE / ANTIPHASE SOLENOID DIAGRAM

